56 research outputs found

    Security, Performance and Energy Trade-offs of Hardware-assisted Memory Protection Mechanisms

    Full text link
    The deployment of large-scale distributed systems, e.g., publish-subscribe platforms, that operate over sensitive data using the infrastructure of public cloud providers, is nowadays heavily hindered by the surging lack of trust toward the cloud operators. Although purely software-based solutions exist to protect the confidentiality of data and the processing itself, such as homomorphic encryption schemes, their performance is far from being practical under real-world workloads. The performance trade-offs of two novel hardware-assisted memory protection mechanisms, namely AMD SEV and Intel SGX - currently available on the market to tackle this problem, are described in this practical experience. Specifically, we implement and evaluate a publish/subscribe use-case and evaluate the impact of the memory protection mechanisms and the resulting performance. This paper reports on the experience gained while building this system, in particular when having to cope with the technical limitations imposed by SEV and SGX. Several trade-offs that provide valuable insights in terms of latency, throughput, processing time and energy requirements are exhibited by means of micro- and macro-benchmarks.Comment: European Commission Project: LEGaTO - Low Energy Toolset for Heterogeneous Computing (EC-H2020-780681

    CYCLOSA: Decentralizing Private Web Search Through SGX-Based Browser Extensions

    Get PDF
    By regularly querying Web search engines, users (unconsciously) disclose large amounts of their personal data as part of their search queries, among which some might reveal sensitive information (e.g. health issues, sexual, political or religious preferences). Several solutions exist to allow users querying search engines while improving privacy protection. However, these solutions suffer from a number of limitations: some are subject to user re-identification attacks, while others lack scalability or are unable to provide accurate results. This paper presents CYCLOSA, a secure, scalable and accurate private Web search solution. CYCLOSA improves security by relying on trusted execution environments (TEEs) as provided by Intel SGX. Further, CYCLOSA proposes a novel adaptive privacy protection solution that reduces the risk of user re- identification. CYCLOSA sends fake queries to the search engine and dynamically adapts their count according to the sensitivity of the user query. In addition, CYCLOSA meets scalability as it is fully decentralized, spreading the load for distributing fake queries among other nodes. Finally, CYCLOSA achieves accuracy of Web search as it handles the real query and the fake queries separately, in contrast to other existing solutions that mix fake and real query results

    SGX-Aware Container Orchestration for Heterogeneous Clusters

    Full text link
    Containers are becoming the de facto standard to package and deploy applications and micro-services in the cloud. Several cloud providers (e.g., Amazon, Google, Microsoft) begin to offer native support on their infrastructure by integrating container orchestration tools within their cloud offering. At the same time, the security guarantees that containers offer to applications remain questionable. Customers still need to trust their cloud provider with respect to data and code integrity. The recent introduction by Intel of Software Guard Extensions (SGX) into the mass market offers an alternative to developers, who can now execute their code in a hardware-secured environment without trusting the cloud provider. This paper provides insights regarding the support of SGX inside Kubernetes, an industry-standard container orchestrator. We present our contributions across the whole stack supporting execution of SGX-enabled containers. We provide details regarding the architecture of the scheduler and its monitoring framework, the underlying operating system support and the required kernel driver extensions. We evaluate our complete implementation on a private cluster using the real-world Google Borg traces. Our experiments highlight the performance trade-offs that will be encountered when deploying SGX-enabled micro-services in the cloud.Comment: Presented in the 38th IEEE International Conference on Distributed Computing Systems (ICDCS 2018

    SecureStreams: A Reactive Middleware Framework for Secure Data Stream Processing

    Full text link
    The growing adoption of distributed data processing frameworks in a wide diversity of application domains challenges end-to-end integration of properties like security, in particular when considering deployments in the context of large-scale clusters or multi-tenant Cloud infrastructures. This paper therefore introduces SecureStreams, a reactive middleware framework to deploy and process secure streams at scale. Its design combines the high-level reactive dataflow programming paradigm with Intel's low-level software guard extensions (SGX) in order to guarantee privacy and integrity of the processed data. The experimental results of SecureStreams are promising: while offering a fluent scripting language based on Lua, our middleware delivers high processing throughput, thus enabling developers to implement secure processing pipelines in just few lines of code.Comment: Barcelona, Spain, June 19-23, 2017, 10 page
    • …
    corecore